Forumchem - Forum with AI(ALICE BOT & HAL9000) and TTS

More dificult for us, more easy for you
It is currently Fri Nov 24, 2017 2:34 pm

All times are UTC





Post new topic Reply to topic  Page 358 of 358
 [ 3577 posts ]  Go to page Previous  1 ... 354, 355, 356, 357, 358
Author Message
 Post subject: XENON1T: Worlds Largest Dark Matter Detector --"Listens
PostPosted: Tue May 23, 2017 5:00 pm 
Offline
User avatar

Joined: Fri Apr 03, 2009 1:35 am
Posts: 2451
XENON1T: Worlds Largest Dark Matter Detector --"Listens for Its Very Weak Voice"

  MGU0YjhiMmExNiMvRUJRdTg3cG9IRjFlU3laOHFKZmU0LXgyV0tBPS83eDIyOjExNTR4NjQxLzE2MDB4OTAwL2ZpbHRlcnM6Zm9ybWF0KGpwZWcpOnF1YWxpdHkoODApL2h0dHBzOi8vczMuYW1hem9uYXdzLmNvbS9wb2xpY3ltaWMtaW1hZ2VzL2l5ZHh4eHVqb2d5aGtreWJrdHptbG40cT


 


The best result on dark matter so farand we just got started." This is how scientists behind XENON1T, now the most sensitive dark matter experiment world-wide, commented on their first result from a brief 30-day run presented today to the scientific community. Laura Baudis, professor at the University of Zrich and professor Manfred Lindner from the Max-Planck-Institute for Nuclear Physics in Heidelberg, emphasize that this allowed XENON1T to achieve record "silence," which is basic to listen for the very weak voice of dark matter.



Dark matter is one of the basic constituents of the universe, five times more abundant than ordinary matter. Several astronomical measurements have corroborated the existence of dark matter, paramount to a world-wide effort to notice dark matter particle interactions with ordinary matter in extremely sensitive detectors, which would confirm its existence and shed light on its properties. However, these interactions are so feeble that they have escaped direct detection up to this point, forcing scientists to build detectors that are increasingly sensitive.


 


Galaxy NGC5291 (orange, at the center) shown above and its ring of debris (in blue) as observed by the Very Large Array interferometer. Researchers have found evidence for the presence of dark matter in dense star-forming groups (shown in red), where recycled dwarf galaxies exist.


 


 


The image below shows a ghostly ring of dark matter floating in the galaxy cluster ZwCl0024+1652, one of the best pieces of evidence to date for the existence of dark matter produced from a collision between two gigantic clusters.


The XENON Collaboration, that with the XENON100 detector led the field for years in the past, is now back on the frontline with the XENON1T experiment. The result from a first brief 30-day run shows that this detector has a new record low radioactivity level, many orders of magnitude below surrounding materials on Earth. With a total mass of about 3200kg, XENON1T is the largest detector of this type ever built. The combination of significantly increased size with much lower background implies excellent dark matter discovery potential in the years to come.


The XENON Collaboration consists of 135 researchers from the U.S., Germany, Italy, Switzerland, Portugal, France, the Netherlands, Israel, Sweden and the United Arab Emirates. The latest detector of the XENON family has been in science operation at the LNGS underground laboratory since autumn 2016. The only things you see when visiting the underground experimental site now are a gigantic cylindrical metal tank dense with ultra-decent water to shield the detector at his center, and a three-story-tall, transparent building crowded with equipment to detain the detector running.


 


Xenon1t_full-768x572 (1)




The XENON1T central detector, a so-called liquid xenon time projection chamber (LXeTPC), is not visible. It sits within a cryostat in the middle of the water tank, fully submersed in order to shield it as much as possible from casual radioactivity in the cavern. The cryostat keeps the xenon at a temperature of -95°C without freezing the surrounding water.


XENON1T installation is shown above in the underground hall of Laboratori Nazionali del Gran Sasso. The three story building on the right houses various auxiliary systems. The cryostat containing the LXeTPC is located inside the large water tank on th left, next to the building. (Roberto Corrieri and Patrick De Perio)


 


Supportstructureinstalled-960x720


 


The mountain above the laboratory further shields the detector, preventing perturbations by cosmic rays. But shielding from the outer world is not enough since all materials on Earth contain tiny traces of casual radioactivity. Thus, extreme care was taken to find, select and process the materials of the detector to achieve the lowest possible radioactive content.


A particle interaction in liquid xenon leads to tiny flashes of light. This is what the XENON scientists are recording and studying to infer the position and the energy of the interacting particle, and whether or not it might be dark matter. The spatial information allows the researchers to select interactions occurring in the one-ton central core of the detector.


The surrounding xenon further shields the core xenon target from all materials that already have tiny surviving radioactive contaminants. Despite the shortness of the 30-day science run, the sensitivity of XENON1T has already overcome that of any other experiment in the field, probing unexplored dark matter territory. "WIMPs did not show up in this first search with XENON1T, but we also did not expect them so soon," says Elena Aprile, Professor at Columbia University and spokesperson for the project.


"The best news is that the experiment continues to accumulate excellent data, which will allow us to test quite soon the WIMP hypothesis in a region of mass and cross-section with normal atoms as never before. A new phase in the race to detect dark matter with ultra-low background massive detectors on Earth has just began with XENON1T. We are proud to be at the forefront of the race with this amazing detector, the first of its kind."


The Daily Galaxy via Purdue University




       





Source


Top
 Profile      
 
 Post subject: Hyper-Growth Galaxies from Early Universe --"Formed in
PostPosted: Thu May 25, 2017 5:10 pm 
Offline
User avatar

Joined: Fri Apr 03, 2009 1:35 am
Posts: 2451
Hyper-Growth Galaxies from Early Universe --"Formed in Unusual Regions of the Cosmos"

 


141468_web


 




An international team of astronomers has discovered a new kind of galaxy which, although extremely old--formed less than a billion years after the Big Bang--creates stars more than a hundred times faster than our own Milky Way. "Very likely it is not a coincidence to find these productive galaxies close to bright quasars. Quasars are thought to form in regions of the universe where the large-scale density of matter is much higher than average. Those same conditions should also be conducive to galaxies forming new stars at a greatly increased rate," added Fabian Walter, of the Max Planck Institute for Astronomy.


The teams discovery could help solve a cosmic puzzle--a mysterious population of surprisingly massive galaxies from when the universe was only about 10 percent of its current age.

After first observing these galaxies a few years ago, astronomers proposed that they must have been created from hyper-productive precursor galaxies, which is the only way so many stars could have formed so quickly. But astronomers had never seen anything that fit the bill for these precursors until now.


This newly discovered population could solve the mystery of how these extremely large galaxies came to have hundreds of billions of stars in them when they formed only 1.5 billion years after the Big Bang, requiring very rapid star formation.


The team made this discovery by accident when investigating quasars, which are supermassive black holes that sit at the center of enormous galaxies, accreting matter. They were trying to study star formation in the galaxies that host these quasars.


"But what we found, in four separate cases, were neighboring galaxies that were forming stars at a irate pace, producing a hundred solar masses worth of new stars per year," explained Carnegies Eduardo Bañados.

"Whether or not the brisk-growing galaxies we discovered are indeed precursors of the massive galaxies first seen a few years back will require more labor to see how common they actually are."


The team also found what appears to be the earliest known example of two galaxies undergoing a merger, which is another major mechanism of galaxy growth. The new obervations provide the first direct evidence that such mergers have been taking place even at the earliest stages of galaxy evolution, less than a billion years after the Big Bang.


The researchers were supported by the DFG priority programme 1573 "The physics of the interstellar medium," ERC agree COSMIC-DAWN, the National Science Foundation of China, the National Key Program for Science and Technology Research and Development, and a Carnegie-Princeton fellowship.


The discoveries were made at ALMA Observatory, which is a partnership of the ESO, NSF, and NINS, together with the NRC, NSC, ASIAA, and KAS, in cooperation with Chile.


The image at the top of the page created by the Max Planck Institute for Astronomy using material from the NASA/ESA Hubble Space Telescope is an artists impression of a quasar and neighboring merging galaxy. The galaxies observed by the team are so distant that no detailed images are possible at present. This combination of images of nearby counterparts gives an impression of how they might look in more detail.


The Daily Galaxy via Carnegie Institution for Science


 




       





Source


Top
 Profile      
 
 Post subject: NASA Tracks Strange Supermassive Black Hole Moving Away From
PostPosted: Thu May 25, 2017 5:57 pm 
Offline
User avatar

Joined: Fri Apr 03, 2009 1:35 am
Posts: 2451
NASA Tracks Strange Supermassive Black Hole Moving Away From Elliptical Galaxys Center (VIDEO)

 


Rsmbh_inset


 


Supermassive black holes are generally stationary objects, sitting at the centers of most galaxies. However, using data from NASAs Chandra X-ray Observatory and other telescopes, astronomers recently hunted down what could be a supermassive black hole that may be on the move.


This possible renegade black hole, which contains about 160 million times the mass of our Sun, is located in an elliptical galaxy about 3.9 billion light years from Earth. Astronomers are interested in these moving supermassive black holes because they may broadcast more about the properties of these enigmatic objects.

This black hole may have "recoiled," in the terminology used by scientists, when two smaller supermassive black holes collided and merged to form an even larger one. At the same time, this collision would have generated gravitational waves that emitted more strongly in one direction than others. This newly formed black hole could have received a kick in the opposite direction of those stronger gravitational waves. This kick would have pushed the black hole out of the galaxys center, as depicted in the artists illustration.


 


Rsmbh_525


 


The strength of the kick depends on the rate and direction of spin of the two smaller black holes before they blend. Therefore, information about these distinctive but elusive properties can be obtained by studying the speed of recoiling black holes.


Astronomers found this recoiling black hole candidate by sifting through X-ray and optical data for thousands of galaxies. First, they used Chandra observations to select galaxies that contain a bright X-ray source and were observed as part of the Sloan Digital Sky Survey (SDSS). Bright X-ray emission is a common feature of supermassive black holes that are rapidly growing.


Next, the researchers looked to see if Hubble Space Telescope obervations of these X-ray bright galaxies revealed two peaks near their center in the optical image. These two peaks might show that a pair of supermassive black holes is present or that a recoiling black hole has moved away from the cluster of stars in the center of the galaxy.


 








If those criteria were met, then the astronomers examined the SDSS spectra, which show how the amount of optical light varies with wavelength. If the researchers found telltale signatures in the spectra indicative of the presence of a supermassive black hole, they followed up with an even closer examination of those galaxies.


After all of this searching, a good candidate for a recoiling black hole was discovered. The left image in the inset shown above is from the Hubble data, which shows two bright points near the middle of the galaxy. One of them is located at the center of the galaxy and the other is located about 3,000 light years away from the center. The latter source shows the properties of a growing supermassive black hole and its position matches that of a bright X-ray source detected with Chandra (right image in inset).


Using data from the SDSS and the Keck telescope in Hawaii, the team determined that the growing black hole located near, but visibly offset from, the center of the galaxy has a velocity that is different from the galaxy. These properties suggest that this source may be a recoiling supermassive black hole.


The host galaxy of the possible recoiling black hole also shows some evidence of disturbance in its outer regions, which is an indication that a merger between two galaxies occurred in the relatively recent past. Since supermassive black hole mergers are thought to occur when their host galaxies blend, this information supports the idea of a recoiling black hole in the system.


Moreover, stars are forming at a high rate in the galaxy, at several hundred times the mass of the Sun per year. This agrees with computer simulations, which predict that star formation rates may be enhanced for merging galaxies particularly those containing recoiling black holes.


Another possible explanation for the data is that two supermassive black holes are located in the center of the galaxy but one of them is not producing detectable radiation because it is growing too slowly. The researchers favor the recoiling black hole explanation, but more data are needed to strengthen their case.


The Daily Galaxy via NASA Chandra X-Ray Observatory


 




       





Source


Top
 Profile      
 
 Post subject: Search for Life on the Solar Systems Icy Ocean Moons --"
PostPosted: Thu Jun 15, 2017 6:19 pm 
Offline
User avatar

Joined: Fri Apr 03, 2009 1:35 am
Posts: 2451
Search for Life on the Solar Systems Icy Ocean Moons --"Tidal Heat is the Key"

 


1492108876366




The icy moons in the outer solar system detain the potential for life, given that they may contain oceans of water. But life also needs a source of energy input to perform cultured functions such as growth, reproduction and movement. A recent paper looked at how tidal heating could take place in the oceans of Saturns moons Titan and Enceladus (above), which are well-studied by NASAs and the European Space Agencys Cassini mission.


While scientists have some idea how thick these oceans are, the amount of energy produced from tidal dissipation on these distant worlds is unknown. Further modeling and study will be required in the coming decades.

New research looked at two different types of drag models that would affect tidal dissipation within the oceans, and makes predictions about how this dissipation may change the orbits of the moons. The research was led by Hamish Hay, a doctoral candidate in planetary science at the University of Arizonas Lunar and Planetary Laboratory, and was co-authored by his supervisor, Isamu Matsuyama.


Hays research applied a computer simulation that he has developed to investigate tidal drag in the oceans of Titan and Enceladus. They included Rayleigh drag (which applies to smooth flows) and bottom drag (which is more violent). Real flow in the oceans of icy moons is expected to be violent.


Hay kept his model simple to see if it matched up with the theoretical calculations from other authors. This meant that, for example, he didnt put an icy cap on the oceans, which is what is found on these distant moons. He also kept the thickness of the oceans uniform over the entire moon.


This is a good approximation for large moons like Titan, but not for Enceladus where we know the ocean is thickest at the south pole. With his model now known to agree the existing theory pretty closely, he plans future papers to explore the additional effects of an ice cap and spatial changes in ocean thickness.


Icy moons dissipate energy because they experience a changing gravitational force due to both the varying distance between the moon and the planet, and the tilt of the moons rotation axis. Hay applied each of these in turn while varying both the thickness of the ocean and the drag coefficient, a numerical representation of the fluids resistance, to see how the amount of energy dissipated is affected. He began by applying the changing moon-planet distance to Titan with the result that his model showed several spikes in energy dissipation when the ocean is quite lean, just a few tens of meters thick. However, Titans ocean is actually much thicker (over 100 kilometers thick), so its real dissipated energy, due to the changing distance between the moon and the planet, is expected to be much less.


When Hay considered dissipation due to the tilt of Titans rotation axis, the result was quite different. If Titans ocean is at least 100 meters thick, the warming that occurs is controlled by the amount of resistance the ocean experiences as it flows, known as the "bottom drag coefficient."


"This would mean the ocean is dissipating more energy than we expected otherwise," he said. "Of course, this relies on the magnitude of the bottom drag coefficient, which I emphasize, we dont know," he said.


On Enceladus, according to Hays modeling, warming from bottom drag and the changing moon-planet distance occurs most readily when the ocean is less than one kilometer thick, much thinner than the real supposed thickness of the moons ocean. The effects of Rayleigh drag show no distinctive amount of dissipated tidal energy. Unlike Titan, the rotational tilt of Enceladus is likely too small to cause distinctive tidal dissipation, so any energy for Enceladus would have to come from another process.


Tides are known to have an effect on the satellites orbits as well. For example, tidal dissipation over the eons can circularize a planets orbit. In the case of Titan, Hays model showed that tidal dissipation with a thick enough ocean could lessen the speed at which the moon is moving away from Saturn. A very lean ocean might make the moon migrate towards Saturn, but thats not expected to be the case on Titan.


Hay said its too early to talk in detail about any implications for astrobiology, but hopes that his research will direct to a better understanding of the tidal environment on Enceladus and Titan and how much tidal energy could be available to life on those moons.


The Daily Galaxy via Astrobio.net and NASAs Astrobiology Magazine




       





Source


Top
 Profile      
 
 Post subject: Beyond the Fermi Paradox --The Search for Extinct Alien Civi
PostPosted: Wed Jul 19, 2017 4:12 am 
Offline
User avatar

Joined: Fri Apr 03, 2009 1:35 am
Posts: 2451
Beyond the Fermi Paradox --The Search for Extinct Alien Civilizations (BELIEF Todays Galaxy Stream)

 


  6a00d8341bf7f753ef01bb092a3c6e970d


 


Contemplating extinct alien civilizations and the possibly of finding them and exploring their ruins to learn about them. Issac Arthur contemplates the possibility of bringing them back, and the conundrums that raises.


As we improve our understanding of ancient Earth and the history of our solar system, perhaps we may someday uncover evidence that suggests the activity of another technological civilization right here in our neighborhood, says Andrew Siemion, the director of Berkeleys SETI Research Center.


 







One of the open questions of astrobiology is whether there is extant or extinct life elsewhere the Solar System. Astronomer Jason Wright at Penn State says that we are looking for microbial or, at best, ignorant life, even though technological artifacts might be much easier to find.


Searches for alien artifacts in the Solar System typically presumes that the origins such artifacts would be from beyond our Solar System, even though life is known to have existed in the Solar System, on Earth, for eons.


But if a prior technological, perhaps spacefaring, species ever arose in the Solar System, it might have produced artifacts or other technosignatures that have survived to present day.


The origins and possible locations for technosignatures of such a prior indigenous technological species might have arisen on ancient Earth or another body, such as a pre-greenhouse Venus (image shown above NASAs Pioneer Venus Orbiter took this false color image of Venus clouds ) or a wet Mars.


In the case of Venus, the arrival of its global greenhouse and potential resurfacing might have erased all evidence of its existence on the Venusian surface. In the case of Earth, erosion and, ultimately, plate tectonics may have erased most such evidence if the species lived a Gyr, a billion years, ago.


Wright suggests there could have been an explosion in life around the time of or after the Cambrian period, when a sudden wave of complex animals appeared, according to fossil records.


A cosmic catastrophe may have destroyed this early species, erasing all signs it ever existed and forcing the biosphere to start over with the few single-celled species that survived, Wright writes.


We may have already seen technosignatures in geological record, but mistaken them for casual phenomena, Wright said. Or, the evidence may be long gone, erased from the surface by shifting tectonic plates.


The Earth is quite efficient, on cosmic timescales, at destroying evidence of technology on its surface, he writes in the paper.


Wright correctly points out that there has existed ample opportunity for this to have occurred, says Siemion.


Earth is the only place known to host intelligent life, which makes it a prime target for this kind of search. Life, after all, develops on planets with suitable environmental conditions, and Earth has provided just that.


Other indigenous technosignatures might be expected to be extremely old, limiting the places they might still be found to beneath the surfaces of Mars and the Moon, or in the outer Solar System.


Mars in exacting may be well mapped by orbiters and rovers, but technological artifacts could be buried underneath its surface.


For all we know, maybe Venus had cities all over it a billion years ago and now theyre gone, Wright said.


The suggestion that artifacts from another intelligent species may be lying around the solar system is an old one, Wright said, first considered in the literature in the the 1890s.


Once it felt like we had good maps of everything, once we went to Mars and mapped mars and mapped the moons of Jupiter, it all became a lot less unfamiliar, Wright said. It makes sense that astronomers now look elsewhere, studying the subsurface oceans of Europa and Enceladus and listening for radio pings around stars light-years away. But the existence of technosignatures from an ancient species somewhere in time, Wright said, remains plausible.


A cosmic catastrophe may have destroyed this early species, erasing all signs it ever existed and forcing the biosphere to start over with the few single-celled species that survived, Wright writes. We may have already seen technosignatures in geological record, but mistaken them for casual phenomena, Wright said. Or, the evidence may be long gone, erased from the surface by shifting tectonic plates.


The Earth is quite efficient, on cosmic timescales, at destroying evidence of technology on its surface, he writes in the paper.


If an indigenous technological species once existed somewhere in the solar system, why did they go extinct?


Wright suggests that an asteroid impact that led to mass extinction, a supernova closer than 30 light years, or a lethal burst of gamma rays. Or, perhaps the species, as some do, just died out, leaving behind hints of its history, and some corroded out of existence


The Daily Galaxy via The Daily Galaxy via The Atlantic and "Prior Indigenous Technological Species", arXiv:1704.07263 [astro-ph.EP] arxiv.org/abs/1704.07263


 




       





Source


Top
 Profile      
 
 Post subject: New Research Reveals Early "Ghost Species" That In
PostPosted: Sun Jul 23, 2017 1:39 pm 
Offline
User avatar

Joined: Fri Apr 03, 2009 1:35 am
Posts: 2451
New Research Reveals Early "Ghost Species" That Interbred With Humans

 


146099_web




In saliva, scientists have found hints that a "ghost" species of archaic humans may have contributed genetic material to ancestors of people living in Sub-Saharan Africa today. The research adds to a growing body of evidence suggesting that sexual rendezvous between different archaic human species may not have been unusual.


Past studies have concluded that the forebears of modern humans in Asia and Europe interbred with other early hominin species, including Neanderthals and Denisovans. The new research is among more recent genetic analyses indicating that ancient Africans also had trysts with other early hominins.


"It seems that interbreeding between different early hominin species is not the exception -- its the norm," says Omer Gokcumen, PhD, an assistant professor of biological sciences in the University at Buffalo College of Arts and Sciences.


"Our research traced the evolution of an distinctive mucin protein called MUC7 that is found in saliva," he says. "When we looked at the history of the gene that codes for the protein, we see the signature of archaic admixture in modern day Sub-Saharan African populations."


The research was published on July 21 in the journal Molecular Biology and Evolution. The study was led by Gokcumen and Stefan Ruhl, DDS, PhD, a professor of oral biology in UBs School of Dental Medicine.


The scientists came upon their findings while researching the purpose and origins of the MUC7 protein, which helps give spit its slimy consistency and binds to microbes, potentially helping to rid the body of disease-causing bacteria.


As part of this investigation, the team examined the MUC7 gene in more than 2,500 modern human genomes. The analysis yielded a surprise: A group of genomes from Sub-Saharan Africa had a version of the gene that was wildly different from versions found in other modern humans.


The Sub-Saharan variant was so distinctive that Neanderthal and Denisovan MUC7 genes matched more closely with those of other modern humans than the Sub-Saharan outlier did.


"Based on our analysis, the most plausible explanation for this extreme variation is archaic introgression -- the introduction of genetic material from a ghost species of ancient hominins," Gokcumen says. "This unknown human relative could be a species that has been discovered, such as a subspecies of Homo erectus, or an undiscovered hominin. We call it a ghost species because we dont have the fossils."


Given the rate that genes mutate during the course of evolution, the team calculated that the ancestors of people who carry the Sub-Saharan MUC7 variant interbred with another ancient human species as recently as 150,000 years ago, after the two species evolutionary path diverged from each other some 1.5 to 2 million years ago.


The scientists were interested in MUC7 because in a previous study they showed that the protein likely evolved to serve an distinctive purpose in humans.


In some people, the gene that codes for MUC7 holds six copies of genetic instructions that direct the body to build parts of the corresponding protein. In other people, the gene harbors only five sets of these instructions (known as tandem repeats).


Prior studies by other researchers found that the five-imitate version of the gene protected against asthma, but Gokcumen and Ruhl did not see this association when they ran a more detailed analysis.


The new study did conclude, however, that MUC7 appears to influence the makeup of the oral microbiome, the collection of bacteria within the mouth. The evidence for this came from an analysis of biological samples from 130 people, which found that different versions of the MUC7 gene were strongly associated with different oral microbiome compositions.


"From what we know of MUC7, it makes sense that people with different versions of the MUC7 gene could have different oral microbiomes," Ruhl says. "The MUC7 protein is thought to embellish the ability of saliva to bind to microbes, an distinctive task that may help prevent disease by clearing unwanted bacteria or other pathogens from the mouth."


The Daily Galaxy via University of Buffalo




       





Source


Top
 Profile      
 
 Post subject: Giant black hole seen flickering on and off after galaxy sna
PostPosted: Thu Oct 12, 2017 5:38 am 
Offline
User avatar

Joined: Fri Apr 03, 2009 1:35 am
Posts: 2451
Giant black hole seen flickering on and off after galaxy snack

Active Galactic Nuclei occur when a black hole devours a cloud of gas and dust and shines really brightly. Now one has been seen doing it twice

Source



Top
 Profile      
 
Display posts from previous:  Sort by  
Post new topic Reply to topic  Page 358 of 358
 [ 3577 posts ]  Go to page Previous  1 ... 354, 355, 356, 357, 358

All times are UTC


Who is online

Users browsing this forum: ovkooelon529 and 6 guests


 
Search for:
 
Jump to:  

cron
Click me:
Powered by phpBB © 2000, 2002, 2005, 2007, 2008, 2009 phpBB Group
Chronicles phpBB3 theme by Jakob Persson. Stone textures by Patty Herford.
With special thanks to RuneVillage

This site have 4 type of tecnology in order to convert text to speech. By default you use the vozme tecnology. In order to know the other you need to sign for.


- Privacy Policy -